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Motivation
Clinical & Research Need: Various applications including epilepsy

surgery, cognitive neuroscience, and brain-computer interfaces

require precise identification of neural sources;

Inverse Problem: Brain Source Imaging (BSI) reconstructs neuronal

currents from M/EEG sensor measurements;

Mathematical Challenge: Problem is severely ill-posed and

ill-conditioned (M � N );

Sensitivity: Small sensor noise propagates into large localization errors

in source space;

Risk: Point estimates without calibrated uncertainty estimation are

unreliable for clinical decisions;

Solution: We need well-calibrated uncertainty measures.

M/EEG calibration pipeline illustrating the three main stages of the framework: source estimation,

uncertainty estimation and uncertainty calibration.

M/EEG Inverse Modeling
Forward Model: A linear regression mapping M sources to N sensors

at T time instants [1]:

Y = LX + E, E ∼ N (0, σ2I)

Y ∈ RM×T : M/EEG sensor recordings over T time points

X ∈ RN×T : Unknown neural source activations at N locations

L ∈ RM×N : Lead-field matrix from electromagnetic forward modeling

E ∈ RM×T : Additive sensor noise, assumed white Gaussian

Inverse Model: Bayesian Minimum Norm (BMN) Estimate [2,3]
Prior: x(t) ∼ N (0, γI)

Isotropic covariance with scalar hyperparameter γ

Empirical Bayes: Learn γ from data

Objective: Negative log marginal likelihood:

L(γ) = log |Σy| + 1
T

T∑
t=1

y(t)>Σ−1
y y(t)

where Σy = γLL> + σ2I is the data covariance.

Posterior Distribution: Gaussian with analytical form:

p(X |Y) =
T∏

t=1
N (x(t)|µx(t), Σx), µx(t) = γL>Σ−1

y y(t), Σx = γ − γ2L>Σ−1
y L

Full Posterior & Time-Averaging
Full Posterior Distribution: Product of time-point posteriors is Gaussian:

p(X|Y) = N (vec(µX), ΣX)

µX = [µx(1), . . . , µx(T )]: concatenated time-varying means

ΣX = blockdiag(Σx, . . . , Σx): block-diagonal covariance matrix

Key Insight for Time-Averaging:
Mean is dynamic: µx(t) varies with time t
Covariance is static: Σx is identical for all t = 1, . . . , T
Due to i.i.d. temporal assumption in prior and noise models

Time-Averaged Source Estimate:

x̄ = 1
T

T∑
t=1

x(t), x̄|Y ∼ N
(
µ̄, Σ̄

)
, µ̄ = 1

T

T∑
t=1

µx(t), Σ̄ = 1
T

Σx

Key Benefit: Time-averaging reduces uncertainty by factor T

Marginalization & Component-wise Uncertainty
Marginalization Principle: Extract per-source estimate and uncertainty from

time-averaged posterior x̄|Y ∼ N
(
µ̄, Σ̄

)
.

Source-wise Posteriors: Gaussian marginals for each source i:

x̄i|Y ∼ N
(
µ̄i, Σ̄ii

)
µ̄i = 1

T

T∑
t=1

[µx(t)]i, Σ̄ii = 1
T

[Σx]ii

Key Advantage: Critical for clinical decisions about specific brain regions

Credible Intervals
Time-Averaged Credible Intervals: For each source component i at
nominal level α ∈ (0, 1):

CI(α)
i = µ̄i ± z(1+α)/2

√
Σ̄ii, z(1+α)/2 = Φ−1((1 + α)/2

)
where Φ is the standard normal CDF.

Interpretation: True time-averaged source amplitude lies in CI(α)
i with

probability α.

Two-sided equal-tailed credible interval with central mass α.

Uncertainty Calibration
Definition: A model is perfectly calibrated if for all confidence levels

α ∈ [0, 1]:
P
(

xtrue ∈ CI(α)
)

= α.

Empirical Coverage: Given N sources, the empirical coverage at

confidence level α is:

α̂ = 1
N

N∑
i=1

I
[
xtruei ∈ CI(α)

i

]
Calibration Condition: α̂ = α for all confidence levels α

Calibration Curve: Plot α̂ vs α across multiple confidence levels

Critical Observation

Bayesian models are often mis-calibrated in practice!

Isotonic Regression Calibration
Problem Statement:

Given: Miscalibrated intervals where α̂ 6= α
Goal: Learn mapping f such that f (α̂) = α

Learning the Calibration Function: We learn a monotonic function

f : [0, 1] → [0, 1] such that:

α ≈ f (α̂)
using isotonic regression:

f̂ = arg min
f monotonic

K∑
k=1

(αk − f (α̂k))2

Calibration Process:
1. Input: Miscalibrated empirical coverages α̂ from inverse solvers

2. Learn: Monotonic mapping f : α̂ → α via isotonic regression

3. Apply: Transform new empirical coverages α̂new → f (α̂new)
4. Output: Calibrated confidence levels

Robust Calibration

Cross-validation prevents overfitting by learning f on training data and

validating on held-out sets.

Numerical Results
Source Model: Macroscopic neuronal sources in the cortical gray
matter of the brain with fixed-orientation dipoles

N = 1284 candidate dipoles normal to cortical surface

M = 64 EEG sensors, T = 1000 time samples

1000 active sources uniformly distributed

Source time courses: i.i.d. zero-mean Gaussian

Noise Model: Controlled SNR via normalized additive noise

Y = Ysignal + (1 − α)‖Ysignal‖F

α‖E‖F
E, Ysignal := LX

E ∼ N (0, σ2I): sensor noise with oracle value

SNR = 20 log10
(

α
1−α

)
SNR range: α = [0.1, 0.3, 0.5, 0.7, 0.9] (13 dB to 40 dB)

Key Trends:
↓ γ with ↑ SNR

↓ Uncertainty with ↑ SNR

↓ Calibration error with ↑ SNR

↓ EMD with ↑ SNR

Performance Insights:
All metrics improve with higher SNR

High SNR → less regularization → lower γ
Uncertainty becomes more precise

Evaluation Metrics:
EMD: Earth Mover’s Distance (source

localization error)

Avg Std: Average posterior standard deviation

AAD: Average Absolute Deviation

AAD = 1
K

K∑
k=1

|α̂k − αk|

Pre-/Post-Calibration: Before (Pre-AAD) and

after (Post-AAD) calibration analysis

Calibration curve

SNR EMD Avg Std γ Pre-AAD Post-AAD

0.1 0.0287 0.0456 1.1234 0.1345 0.0456

0.3 0.0234 0.0321 0.8912 0.0987 0.0321

0.5 0.0189 0.0254 0.6789 0.0765 0.0254

0.7 0.0156 0.0187 0.4567 0.0543 0.0187

0.9 0.0123 0.0123 0.2345 0.0321 0.0123

Conclusion
BMN delivers accurate source localization and well-calibrated uncertainty across SNR conditions.

All metrics improve with higher SNR: EMD decreases, posterior uncertainty reduces, and learned gamma

properly decreases. The method provides reliable performance for M/EEG source imaging.
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