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Motivation Uncertainty Calibration
= Clinical & Research Need: Various applications including epilepsy = Definition: A model is perfectly calibrated if for all confidence levels
surgery, cognitive neuroscience, and brain-computer interfaces a € [0,1]:
require precise identification of neural sources; P (xtrue c CI(O‘>) — .

= Inverse Problem: Brain Source Imaging (BSI) reconstructs neuronal
currents from M/EEG sensor measurements: = Empirical Coverage: Given N sources, the empirical coverage at

= Mathematical Challenge: Problem is severely ill-posed and confidence level e is:

ill-conditioned (M < N):

N
1
| | o a:—z [trueeCI )}
= Sensitivity: Small sensor noise propagates into large localization errors N &
In source space;

= Risk: Point estimates without calibrated uncertainty estimation are
unreliable for clinical decisions;

= Calibration Condition: & = o for all confidence levels o
= Calibration Curve: Plot & vs a across multiple confidence levels

= Solution: We need well-calibrated uncertainty measures.

Bayesian Source Uncertainty Uncertainty Bayesian models are often mis-calibrated in practice!

Estimate Estimate Calibration
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Isotonic Regression Calibration

Nominal coverage

p=E[X|Yy] Clgedible interval Calibration curve n Problem Statement'
M/EEG calibration pipeline illustrating the three main stages of the framework: source estimation, = Given: Miscalibrated intervals where & +# o

uncertainty estimation and uncertainty calibration. , .
= Goal: Learn mapping f such that f(&) = «

= Learning the Calibration Function: We learn a monotonic function

M/EEG Inverse Modeling f+10,1] = [0, 1] such that:
= Forward Model: A linear regression mapping M sources to N sensors ax f(&)
at T time instants [1]: using isotonic regression:
Y=LX+E, E~N(0, 0%l R
+ I, N( y O ) f— arg in Z o —

f monotomc

=Y € RMXT: M/EEG sensor recordings over T time points . )
= X € RY*T: Unknown neural source activations at N locations * Calibration Process:
= L € RMXN: | ead-field matrix from e|ectromagneﬁc forward mode“ng 1. Input: Miscalibrated empirical coverages & from inverse solvers
» E ¢ RMXT- Additive sensor noise, assumed white Gaussian 2. Learn: Monotonic mapplngf - v — a Vvia isotonic regression
= Inverse Model: Bayesian Minimum Norm (BMN) Estimate [2,3] 5. Apply: Transform new empirical coverages énew = f(Gnew)

= Prior: x(t) ~ A(0,~1) /L. Output: Calibrated confidence levels

= |sotropic covariance with scalar hyperparameter ~
= Empirical Bayes: Learn « from data
= Objective: Negative log marginal likelihood:

T Cross-validation prevents overfitting by learning f on training data and
L(7) = log |Z,] + ny(t)TE;ly(t) validating on held-out sets.
t=1

where 2y = yLL" + o1 is the data covariance.
= Posterior Distribution: Gaussian with analytical form:

Numerical Results

p(X|Y) = HN Oa(t),Bs), pa(t) =4L'E)'y(t), Z;=v-~L'E'L

= Source Model: Macroscopic neuronal sources in the cortical gray
matter of the brain with fixed-orientation dipoles
N = 1284 candidate dipoles normal to cortical surface

Full Posterior & Time-Averaging

= M = 64 EEG sensors, T' = 1000 time samples
. e Lo . . . . : : = 1000 active sources uniformly distributed
= Full Posterior Distribution: Product of time-point posteriors is Gaussian: « Source time courses: i.i.d Zeyro_mean Gaussian
pX[Y) =N (vec(px), Xx) = Noise Model: Controlled SNR via normalized additive noise
, 1 — o Ysignal
=y = [, (1),. .., (T)]: concatenated time-varying means Y = YSlgna| ( )HE ”FE, Y5|gna| LX
= 3 = blockdiag(X,, ..., 3X,): block-diagonal covariance matrix O‘H HF
" Key Insight for Time-Averaging: = E ~ N(0,0%): sensor noise with oracle value
= Mean is dynamic: u,(t) varies with time ¢ = SNR = 20log;, (%)
= Covariance is static: X, is identical forallt =1,...,T = SNR range: o = [0.1,0.3,0.5,0.7,0.9] (13 dB to 40 dB)
= Due to i.i.d. temporal assumption in prior and noise models = Key Trends:
= Time-Averaged Source Estimate: = | v with 1 SNR
T T = | Uncertainty with 1 SNR
1 _ = _ 1 _ 1 = | Calibration error with 1 SNR )
=7 X0, XY ~N (), p=5) m), =% - | EMD with 1 SNR o P
= . e = Performance Insights: " et caane
= Key Benefit: Time-averaging reduces uncertainty by factor T « All metrics improve with higher SNR 8

= High SNR — less regularization — lower ~
= Uncertainty becomes more precise

b=
[=4]
L

Empirical Coverage

Marginalization & Component-wise Uncertainty « Evaluation Metrics:
= EMD: Earth Mover’s Distance (source
= Marginalization Principle: Extract per-source estimate and uncertainty from localization error) 02
time-averaged posterior }E\Y ~ N (Ij% 2) _ = Avg Std: Average posterior standard deviation N
. . : . . = AAD: Average Absolute Deviation L | | . . -
= Source-wise Posteriors: Gaussian marginals for each source i: . 000z oe 05 0810
1 AAD — %Z 6 — oy Calibration curve

_ _ = 3 1 _

TilY ~ N (i, Si) i = T > e S = f[zx]ii
= = Pre-/Post-Calibration: Before (Pre-AAD) and

= Key Advantage: Critical for clinical decisions about specific brain regions after (Post-AAD) calibration analysis

SNR EMD AvgStd v  Pre-AAD Post-AAD
0.1 0.0287 0.0456 1.1234 0.1345 0.0456
0.3 0.0234 0.0321 0.8912 0.0987 0.0321
0.5 0.0189 0.0254 0.6/89 0.0765 0.0254
0.7 0.0156 0.0187 0.4567 0.0543 0.0187
0.9 0.0123 0.0123 0.2345 0.0321 0.0123

Credible Intervals

= Time-Averaged Credible Intervals: For each source component ¢ at
nominal level a € (0, 1):

Ll = i + 2ra)2V Siie Zasaye = O ((1+@)/2)

where @ is the standard normal CDF.

Conclusion

= Interpretation: True time-averaged source amplitude lies in Clga) with

probability o. BMN delivers accurate source localization and well-calibrated uncertainty across SNR conditions.
All metrics improve with higher SNR: EMD decreases, posterior uncertainty reduces, and learned gamma
properly decreases. The method provides reliable performance for M/EEG source imaging.
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